מה ההספק שהמקור מספק בבעיה הזו?
![{\displaystyle P_{out}=v(t)\cdot i(t)=v(t)[i_{L}+i_{C}+i_{R}]=v(t)\cdot i_{L}+v(t)\cdot i_{C}+v(t)\cdot i_{R}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59e7fca4bb76623f6b417c449c763444fa510d5c)


ולכן, ההספק שנמסר למעגל על ידי המקור מקיים:

זהו מבנה טיפוסי של חוק שימור!
נשים לב כי בפיתוח זה, ההספק המועבר לנגד תמיד חיובי.
גם חוק שימור המטען הוא חוק כזה:


מבנה זהה למה שראינו קודם, ולכן באנלוגיה לחוק שימור המטען הדיפרנציאלי:

כאן אין הפסדי הולכה, ולכן "חסר איבר", היינו מצפים לקבל משהו כמו:

נביט בחוק שימור התנע:


התנע הוא

, ולכן:
![{\displaystyle {\vec {F}}\cdot m{\vec {v}}={\frac {\partial }{\partial t}}[({\vec {p}}\cdot {\vec {p}})/2]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/69e48b4d7c9c81889d8e5d58883ccc9d7e1f78d5)

ולכן:

כעת, נניח כי יש מטען
צפיפות זרם
, ויש גם שדה חשמלי ומגנטי. על המטען פועל כוח לורנץ.

נציב ב

את:

וגם נשתמש בזהות

ונקבל

נציב את הביטוי, בתוך האינטגרל, ונקבל:
![{\displaystyle \iiint {\vec {E}}\cdot {\vec {J}}dV=\iiint \left[{\frac {\partial }{\partial t}}\left(-{\frac {\epsilon _{0}}{2}}|E|^{2}-{\frac {\mu _{0}}{2}}|H|^{2}\right)-\nabla \cdot ({\vec {E}}\times {\vec {H}})\right]dV}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d7d313e823a388ce9154bafb9e4a4bbf0e511478)
מכיוון שהחוק חייב להתקיים עבור כל מעטפת (כלומר, בחירת המעטפת היא שרירותית) חייב להתקיים שיוויון באינטגרנד:

אם נשתמש בחוק גאוס, נוכל גם להציג את משפט פוינטינג בצורתו האינטגרלית ע"י
![{\displaystyle \underbrace {-\iint ({\vec {E}}\times {\vec {H}})\cdot {\hat {n}}ds} _{\text{total flux going in from the poynting vector}}={\frac {\partial }{\partial t}}\underbrace {\iiint \left[{\frac {\epsilon _{0}}{2}}|E|^{2}+{\frac {\mu _{0}}{2}}|H|^{2}\right]{dV}} _{\text{all the stored energy}}+\underbrace {\iiint {\vec {E}}\cdot {\vec {J}}dV} _{\text{all the power}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/23e5daf33a99b8d2466a6a741e4d0d34056afe24)
וקטור פוינטינג - מציין את כיוון "זרימת" צפיפות ההספק בבעיה (
):

צפיפות האנרגיה החשמלית (
![{\displaystyle [u_{E}]={\frac {J}{m^{3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8aae737b039c9bdff75565872e379d0d13311d)
):

צפיפות האנרגיה המגנטית (
![{\displaystyle [u_{M}]={\frac {J}{m^{3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/efcdb03c75363eda080b0e26ed355ebb28a37635)
):

צפיפות הספק הולכה (
![{\displaystyle [p]={\frac {\text{Watt}}{m^{3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/537bb61df2763387a6703c6bd85f778a1b20e26e)
):

את ההספק המושקע בהולכה ניתן לפרק, במידת הצורך, ל-2 תרומות:
אם מדובר בחומר מוליך אז ניתן לפרק את הזרם לשתי קבוצות - זרמי מקורות וזרמי הולכה:


דוגמא - אנרגיה חשמלית אגורה בקבל לוחות[edit | edit source]
נתון המבנה באיור 2. מה האנרגיה האגורה בקבל?


מצד שני:

ולכן:

דוגמא - אנרגיה חשמלית אגורה בסליל מלבני[edit | edit source]
באיור 3 מתואר משרן מלבני.
בתוך הסליל:

מתנאי שפה מתקבל:

אם עבר דרך הסליל זרם I, אז מתקיים:

לכן:

מצד שני:

לבסוף:

באיור 4 מתואר נגד גלילי. החומר ממנו עשוי הגליל הוא בעל מוליכות סגולית
.
בכל התחום בין הלוחות:

ולכן, מחוק אמפר השדה המגנטי הינו:

נחשב את וקטור פוינטינג:

צפיפות הספק ההולכה תהיה:

נראה שאכן משפט פוינטינג מתקיים:


בין הלוחות בתוך הנגד:

ואכן, משפט פוינטינג מתקיים!
דוגמא תלויה בזמן - גל מישורי[edit | edit source]
השדות עבור גל מישורי כללי כלשהו נתונים ע"י




מכיוון שגל מישורי הוא פיתרון בתווך חסר מקורות:

צפיפויות האנרגיה יהיו:


האם מתקיים משפט פוינטינג?

התוצאה המקורית הייתה

.
האם אכן מתקיים:

אכן כן!
דוגמא נוספת תלויה בזמן - קבל בקירוב קוואזי - סטטי[edit | edit source]
המערכת מתוארת באיור 5.


משפט פוינטינג בצורה האינטגרלית:


![{\displaystyle -\iint {\vec {S}}\cdot {\hat {n}}dS=-[{\vec {S}}(x=0)\cdot (-{\hat {x}})\cdot dL+{\vec {S}}(x=W)\cdot {\hat {x}}\cdot dL]=-[\epsilon _{0}({\frac {V_{0}}{d}})^{2}{\frac {-W}{4}}\omega \sin(2\omega t)\cdot dL\cdot 2]=-\epsilon _{0}({\frac {V_{0}}{d}})^{2}{\frac {W}{2}}\omega \sin(2\omega t)\cdot dL}](https://wikimedia.org/api/rest_v1/media/math/render/svg/491b7b490b75e6376e7bb6bceb4f06d6979e91a3)


מהו וקטור פוינטינג הממוצע?

מה בכל זאת האנרגיה המגנטית?


בפיתרון הקוואזי סטטי:

ומצד שני:

ולכן:

וקטור פוינטינג ממוצע, אנרגיה ממוצעת, הספק ממוצע[edit | edit source]
באופן כללי כאשר אנו עוסקים בשדות הרמוניים התלויים בזמן, התלות הרגעית של הגדלים הפיזיקליים
במשפט פוינטינג פחות מעניינים אותנו, ומאחר ומדובר בגדלים מחזוריים בזמן, היינו רוצים להבין מה קורה
בממוצע, על פני זמן מחזור.
נגדיר:

כל גודל פיזיקלי F ניתן למצע על פני מחזור, על ידי הביטוי הבא:

משפט פוינטינג לשדות קומפלקסיים[edit | edit source]
את השדה החשמלי והשדה המגנטי ניתן לרשום באמצעות הפאזורים שלהם:


נציב את הביטויים הקומפלקסיים לשדה המגנטי והחשמלי במשוואת פוינטינג:

זרימת הספק ממוצעת:

נחשב את האנרגיה החשמלית:

ובאותה דרך האנרגיה המגנטית תהיה:

נגזרות בזמן את השדה החשמלי:

ואת אותה התוצאה נקבל עבור השדה המגנטי.
נחשב את ההספק שמושקע בהנעת זרמים במערכת:


משפט פוינטינג לאחר מיצוע בזמן:
![{\displaystyle -\nabla \cdot \left[{\frac {1}{2}}\Re ({\tilde {E}}\times {\tilde {H}}^{*})\right]={\frac {1}{2}}\Re ({\tilde {E}}\cdot {\tilde {J}}^{*})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89e80592cc3bf33b5909065af98cb821980fee7c)
משפט פוינטינג עבור הפאזורים של השדות - פיתוח[edit | edit source]
וקטור פוינטינג הממוצע:

נשתמש בחוק אמפר (בצורה הפאזורית):

ונחשב בעזרתו את צפיפות הספק ההולכה:

נעביר אגפים ונקבל:

משוואה זו היא בעצם מעין משפט פוינטינג קומפלקסי עבור הפאזורים של השדות והזרמים.
נפריד לחלק ממשי ומדומה:

החלק הממשי הוא בעצם משפט פוינטינג הממוצע בזמן שכבר קיבלנו.
![{\displaystyle {\text{Imaginary: }}\Im \left[-\nabla \cdot ({\tilde {E}}\times {\tilde {H}}^{*})\right]=\Im \left[{\tilde {E}}\cdot {\tilde {J}}^{*}\right]-\omega (\mu _{0}|{\tilde {H}}|^{2}|-\epsilon _{0}|{\tilde {E}}|^{2})=\Im \left[{\tilde {E}}\cdot {\tilde {J}}^{*}\right]-4\omega (u_{M}-u_{E}))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f62b2e64ee3f21ba8af775639b6e12ed87f4882)
חלק ממשי - מתאר את זרימת ההספק הממשי בבעיה, הספק שמושקע בביצוע עבודה.
חלק מדומה - מאזן של אנרגיה ריאקטיבית.